DATA SHEET

BA423A

AM band-switching diode

FEATURES

- Continuous reverse voltage: max. 20 V
- Continuous forward current: max. 50 mA
- Low diode capacitance: max. 2.5 pF
- Low diode forward resistance: max. 1.2Ω.

APPLICATION

- Band switching in AM radio receivers.

DESCRIPTION

Planar band-switching diode in a hermetically sealed glass SOD68 (DO-34) package.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{R}	continuous reverse voltage	-	20	V
I_{F}	continuous forward current	-	50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} ;$ see Fig.2	0.9	V
I_{R}	reverse current	see Fig.3		
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		
		$\mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	100	nA
C_{d}	diode capacitance	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{R}}=3 \mathrm{~V} ;$ see Fig.4	5	$\mu \mathrm{~A}$
r_{D}	diode forward resistance	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=1 \mathrm{MHz}$; see Fig.5	2.5	pF

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th } j \text {-tp }}$	thermal resistance from junction to tie-point	lead length 10 mm	240	K/W
$R_{\text {th } j-a}$	thermal resistance from junction to ambient	lead length 10 mm ; note 1	500	K/W

Note

1. Device mounted on a FR4 printed-circuit board without metallization pad.

GRAPHICAL DATA

(1) $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$; typical values.
(2) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.
(3) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; maximum values.

Fig. 2 Forward current as a function of forward voltage.

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Fig. 4 Diode capacitance as a function of reverse voltage; typical values.

$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$.
Solid line: maximum values.
Dotted line: typical values.
Fig. 3 Reverse current as a function of junction temperature.

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Fig. 5 Diode forward resistance as a function of forward current; typical values.

AM band-switching diode

PACKAGE OUTLINE

Dimensions in mm.
The marking band indicates the cathode.

Fig. 6 SOD68; DO-34.

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

